

 Navigation

 	
 index

 	
 next |

 	nsupdate.info 0.11.0 documentation

Welcome to nsupdate.info’s documentation!

	Introduction
	About nsupdate.info

	Features

	ChangeLog

	Using the service
	Requirements

	Functionality of the Web Interface

	Troubleshooting

	Update clients

	Administrating the service
	Installation (for development/testing)

	Configuration

	Installation (for production)

	Configuration

	Customization of the Web UI

	Maintenance

	The nsupdate.info software Project
	History

	Project site

	Translations

	Contributing

	Standards used

	Extensions we made to the standards
	/nic/delete API url

	Security considerations
	Transmission security

	Login with remote vs. local Account

	Passwords / Secrets / Keys

	CSRF protection

	Clickjacking protection

	XSS protection

	Cookies

	Django’s SECRET_KEY

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nsupdate.info 0.11.0 documentation

Introduction

About nsupdate.info

https://nsupdate.info is a free dynamic dns service.

nsupdate.info is also the name of the software used to implement it.
If you like, you can use it to host the service on your own server.

Documentation: https://nsupdateinfo.readthedocs.org/

Software project: https://github.com/nsupdate-info/nsupdate.info

[image: https://travis-ci.org/nsupdate-info/nsupdate.info.png]
 [https://travis-ci.org/nsupdate-info/nsupdate.info][image: https://coveralls.io/repos/nsupdate-info/nsupdate.info/badge.png]
 [https://coveralls.io/r/nsupdate-info/nsupdate.info][image: https://badge.fury.io/py/nsupdate.png]
 [http://badge.fury.io/py/nsupdate][image: https://pypip.in/d/nsupdate/badge.png]
 [https://crate.io/packages/nsupdate/](build and coverage are for latest repo code, package and downloads are for pypi release)

Features

	Frontend: Dynamic DNS updates via dyndns2 protocol (like supported
by many DSL/cable routers and client software).

	Backends:
	Uses DYNAMIC DNS UPDATE protocol (RFC 2136) to update compatible
nameservers like BIND, PowerDNS and others (the nameserver itself is
NOT included).

	Optionally uses dyndns2 protocol to update other services - we can
send updates to configurable 3rd party services when we receive an
update from the router / update client.

	Prominently shows visitor’s IPs (v4 and v6) on main view,
shows reverse DNS lookup results (on host overview view).

	Multiple Hosts per user (using separate secrets for security)

	Add own domains / nameservers (public or only for yourself)

	Related Hosts: support updating DNS records of other hosts in same LAN by
a single updater (e.g. for IPv6 with changing prefix, IPv4 also works)

	Login with local or remote accounts (google, github, bitbucket, ...
accounts - everything supported by python-social-auth package)

	Manual IP updates via web interface

	Browser-based update client for temporary/adhoc usage

	Shows time since last update via api, whether it used TLS or not

	Shows v4 and v6 IP addresses (from master nameserver records)

	Shows client / server fault counters, available and abuse flags

	Supports IP v4 and v6, TLS.

	Easy and simple web interface, it tries to actively help to configure
routers / update clients / nameservers.

	Made with security and privacy in mind

	No nagging, no spamming, no ads - trying not to annoy users

	Free and Open Source Software, made with Python and Django

ChangeLog

Important: when you update and your update crosses the 0.9.x / 0.10 boundary,
you must first upgrade to 0.9.x and your database must be migrated to 0.9.x.
AFTER that, you can upgrade to 0.10.x or any later version (and then run the
migrations for that version). For upgrading and migration help, please see
the docs that match the version you are upgrading to.

Release 0.11.0

New Features:

	Hosts: show client authentication error/success on the host view

	Domains: support optional secondary nameserver - if given, prefer it for
DNS queries

	implement host IP blacklist, fixes #162

	implement host staleness level + management script to check whether host IP
is being updated

	add language to user profiles

	add registration_closed template

Fixes:

	catching more exceptions

	misc. UI fixes / improvements

	misc. python3 compatibility fixes / improvements

	fix resolving to not add the service server’s domain, but just ”.”

	timeout / retry timings adjusted

	“Login” button at end of user registration does not work #183

	catch IndexError when computing IP of related hosts, fixes #190

	catch socket.error (e.g. “connection refused”), fixes #195

Other changes:

	made form field labels translatable, added translations, added plurals

	added tuning tips section to admin docs (not much yet)

	some internal cleanups / refactorings

	use templated error pages for 400,403,404,500 http status codes

	upgraded CDN links for bootstrap, jquery, font-awesome

Release 0.10.0

New Features:

	if the abuse / abuse_blocked flag is set for a host, it is removed from DNS

	users can delete their accounts, if they want to stop using the service
(all hosts, domains, etc. created by this user will be deleted)

	added admin UI for Related Hosts

	added “domains” management command to check the domains (reachability of
nameserver, does nameserver answer queries for the domain?)

Fixes:

	the link in the registration mail is now https if the site runs with https

	avoid sending unneccessary “delete” updates to master nameserver - first
check if there is something to delete

Other changes:

	support and require Django >= 1.7

	remove Python 2.6 support, require 2.7 or 3.3+

	remove support for “south” migrations (used for 0.9.x and before)

	add support for django 1.7’s builtin migrations

	misc. layout / UI improvments

	misc. doc improvements

	improved original strings in translations, use “trimmed” in django templates

	upgraded bootstrap

Release 0.9.1

Fixes:

	fix security issue with “related hosts” / “service updaters”, fixes #177

Release 0.9.0

Note: 0.9 is the last release with Django 1.6.x support, we’ll remove support
for it in 0.10 (because Django 1.7 has some implications that make it hard to
support 1.6 and 1.7).

New Features:

	Related Hosts: support updating DNS records of other hosts in same LAN by
a single updater (e.g. for IPv6 with changing prefix, IPv4 also works)

	Handle IPv4-mapped IPv6 addresses
Some reverse proxy configurations pass REMOTE_ADDR as a IPv4-mapped IPv6
address when listening on a IPv6 socket.
We now convert such a mapped address into a IPv4 address at all usages.
Handles both the ::ffff:192.0.2.128 format as well as the deprecated
::192.0.2.128 format.

	add “inadyn” dyndns updater to configuration help

Fixes:

	catch Timeout exceptions

Other changes:

	updated / added some translations

Release 0.8.0

Note: 0.8 is the last release with Django 1.5.x support, we’ll remove support
for it in 0.9. Django 1.5 is also EOLed from Django Project, so upgrade your
Django soon.

New Features:

	redesigned UI:
	unify hosts and domains overview into 1 view

	move forms to add hosts/domains to own views

	move reverse DNS display to home view

	removed some superfluous links and formatting

	host view: give more feedback about client/server results on the web UI,
so a user can see why updates are not working (even if some stupid update
client does not tell him).
But please note: if you fail to configure your credentials correctly in your
update client, we can NOT show that there as we need them to load your host
record from the database (and to know it is really YOU who is talking to us).

	add OpenWRT configuration help

	add search field to Host and Domain admin

Fixes:

	fixed Python 3 incompatibility of Basic Auth code (issue #172)

	fix security issue: abuse_blocked flag could be worked around by abuser

	refactored internal api so host/zone boundary is not lost and does not need
to be discovered (we KNOW it) - fixes issues #122 and #138.

	fixed tests so they behave on travis-ci

	fix unhandled PeerBadTime exception

Other changes:

	form field help texts are translatable now

	admin views: added “created”, removed “created_by” filter (does not scale)

Release 0.7.0

Important notes:

	WE_HAVE_SSL configuration setting name was changed to WE_HAVE_TLS.
Please update your configuration, if you use it.

	Django 1.6.x required now, if you want to use 1.5.x: see setup.py

New Features:

	i18n support (uses preferred language from UI or browser)

	fr/de/it translations added

	translations are on transifex, you can help there!
https://www.transifex.com/projects/p/nsupdateinfo/

	add m0n0wall configuration help

	add pfSense configuration help

	implemented host delete API at /nic/delete to remove A or AAAA record in DNS
(very similar to the dyndns2 update api, which does not offer this)

	host delete functionality on web UI

	custom templates (for legalese, site-specific notes, etc. - see docs for
details)

	abuse / abuse blocked flags + script support (see docs)

	notification by email if host gets flagged as abusive

	show example zone file for bind9 after adding a new domain

	better display in the admin

	enabled Django’s clickjacking protection middleware in settings

Fixes:

	fix some status 500 errors / unhandled exceptions:
	when domain does not exist

	on profile view when not logged in

	DnsUpdateError (e.g. SERVFAIL)

	NoNameservers exception

	UnknownTSIGKey exception

	“Network is unreachable” error

	empty ?myip=

	invalid ip address strings in updates (now: “dnserr”)

	fix html validation errors

	fix login url generation in activation_complete template, issue #139

	switch off recursion when querying master dns, issue #142

	fix –reset-available cmdline option processing

	updated dd-wrt configuration with verified settings

Other changes:

	also support Python >= 3.3 (experimental, please give feedback)

	improve looks, UI / UX

	improve docs, sample configs

	remove requirements from setup.py that were only for development

	removed view for legalese (please solve locally, according to your law -
you can use custom templates for this)

	added some ugly logos (if you can do better ones, please help)
https://github.com/nsupdate-info/nsupdate.info/issues/78

	replaced “SSL” by “TLS” everywhere.
SSL is the old/outdated name. Since 1999, it’s called TLS.

	updated to latest versions on CDN: jquery, bootstrap, font-awesome

Release 0.6.0

Important notes:

	importing from nsupdate.settings does not work any more (nor
does the nsupdate.local_settings hack work any more).
in your local_settings.py, please do your imports like this:

from nsupdate.settings.dev import * # for development
alternatively:
from nsupdate.settings.prod import * # for production
after that, override whatever you need to override.

	if you run Django 1.6.x, you manually need to apply a patch for
django-registration (until that package is fixed for django 1.6
compatibility), see the django-registration-dj16-fix.diff in the toplevel
directory of the repo.

New Features:

	browser/javascript-based update client (the URL you need is shown in the
“browser” help panel after you add a host or generate a new secret).

Other changes:

	cleaned up how settings work, improved docs about a sane settings setup

	document postgreSQL setup

	also support Python 2.6.x

	also support Django 1.6.x

	for debugging, added django-debug-toolbar

Release 0.5.0

Important note (only for upgrades):

There is an issue if you use “south” and the “sqlite” database - it can’t
add BooleanFields and set the default values correctly when using “migrate”.

As we added some critical fields, you need to use these commands immediately
after running “django-admin.py migrate” to make sure their initial values are
correct:

all hosts will be available, no host will have abuse flags set:
django-admin.py faults --reset-available --reset-abuse --reset-abuse-blocked

Fixes:

	use python-social-auth exception middleware to catch exceptions

	status view is for logged-in users only (it was removed from navigation,
but still accessible by URL in previous releases)

	fix session cookie behaviour to be more private for not-logged-in users

New Features:

	“update other services” feature (act as dyndns2 client to update 3rd party
services when we receive an update)

	added per-host fault counters for update client and dns server

	abuse handling (for clients triggering too many faults) using the “faults”
management command

	abuse-blocked / abuse / unavailable counts on status view

	notfqdn and abuse dyndns2 api result codes supported

	show reverse DNS of current IPs (only on host overview)

	customizable footer (use a custom base_footer.html template)

Other changes:

	use sane field lengths in the DB

	more help texts, more hints, better docs

	workflow for adding a domain is now similar to adding a host

	improved user interface

	use travis-ci and coveralls services for the project

	updated bootstrap to 3.0.2 (from cdn)

Release 0.4.0

Fixes:

	fix api return value (no “noauth”, just “badauth”)

	fix invalid /detectip/None URL for fresh session

	make IP detection on the web UI a bit more reliable

	fix KeyErrors in logging (at least for default format)

New Features:

	use REMOTE_ADDR for one of the 2 IP detections

	add a warning on the UI if the user has no javascript enabled

	use real session cookies by default (that get cleared on browser close)

	support “keep me logged in” if user wants a permanent 14d cookie

	use html5 autofocus to put cursor into the right input field

	python manage.py testuser to reinitialize test user (see docs)

Other changes:

	document clearsessions usage

	more tests

Release 0.3.0

	Fixes security issue
https://github.com/nsupdate-info/nsupdate.info/issues/81

	improved logging levels, added log output at some places

	dnserr dyndns2 result supported

	more safe bind9 configuration example

	support for single-host update secrets

	make dnstools unit tests work everywhere

	remove beta from version number (but keep general beta state in pypi
classifier)

Release 0.2.0b0

First release on PyPi.

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nsupdate.info 0.11.0 documentation

Using the service

Requirements

Update client

The best way to use the service for updating a hostname with a dynamic address is to have a dyndns2 compatible
update client.

Usually this kind of software is built-in in your internet router (search for “dynamic DNS”, “DDNS”, “dyndns” on
its user interface).

Alternatively, you can also run a software on a PC / server (like ddclient or inadyn for Linux).

Or even just use your browser to update your IP via the web interface of the service.

Note: please do not “update” your IP address if it did not change. Doing so is considered abusive use of the service.
All sane dyndns2 clients only send an update if the IP address has changed.

Web interface

When using a browser for administrating your hosts / domains via the web interface of the service, please:

	use https (for security)

	have cookies enabled (we need them for keeping the session after you logged in)

	have javascript enabled

	use a sane browser, like Firefox, Chrome/Chromium or Safari

Functionality of the Web Interface

Your current IP(s) + reverse DNS

We show your current IP address(es).
Depending on the type of your internet connection, this can be IP v4 or v6 or both (dual stack).
If nothing shows up, you don’t have that kind of IP address.

We additionally show the result of a reverse DNS lookup (“rDNS”) for your IP address(es).
If nothing shows up, that IP does not have a reverse DNS record.

We always show you the IP addresses where your requests come from. Under some circumstances, these might not be what
you expect (e.g. presence or non-presence of NAT gateways, proxies, etc.).

We detect your addresses by 2 means:

	your current remote address (where your accesses to the web interface come from) - the IP detected this way is
immediately visible on the web interface.

	if we don’t already have the IP address from the remote address, we use an invisible fake “image” that your browser
loads from an IPv4-only or IPv6-only server - the IP detected by this method usually shows up after a few seconds.

We do some optimizations to not load these images too frequently, but also try to make sure we do not show you outdated
information about your current IP addresses.

If you don’t see an IP address of some kind (v4 or v6) after a few seconds, it means you don’t have that kind of
address (plus working connectivity of that kind).

Register / Login / Logout

You need to create an account to use most of the functionality of the service.

Your hosts / domains are only for you, so you need to identify to create or change them.

You need to give a valid E-Mail address, as we send you a link you need to access to complete the registration.

We’ll also use that E-Mail address in case you forget your login password or when there are technical issues
with your hosts or domains.

For your own safety, use https and a sane password.

Be careful: in case you lose your login username/password and you also can’t receive mail sent to the E-Mail address
you gave when registering, you might not be able to regain access to your account / your hosts (neither automatically
nor with help from service admin) as you likely can’t prove that they are really yours / you are permitted to
control them.

Overview

We show a list of your hosts and also available (public) domains as well as your domains (if any).

You can see the most important data directly on the overview page. If you need more details or you want to change
something, click on the host or domain you want to see / edit.

You can also add hosts and domains by clicking on the respective button.

You can always get back to the overview page by clicking on the link in the navigation bar.

Adding Hosts

You can add hosts to all the zones (base domains) offered to you.
Usually this will be one or more zone(s) offered by the service operator, but you can even add your own domains
(see the separate section about domains).

After creating a new dynamic host name, we’ll show you an automatically created update secret for that host.
You need it for configuring your update client and we show you example configurations for some popular routers and
clients on the same page.

In case you lose the update secret, just create a new one (and enter it in your router / update client).

IP v4 and v6 addresses work completely independently of each other, you need to send 2 updates if you want to update
both. If you want to be specific about which IP address you update, use our IPv4-only or IPv6-only host to make sure
it is the v4 (or v6) address.

After configuring a new update client, please keep an eye one the Faults column on the overview page.
It shows 2 values: C: <client faults> S: <server faults>

An increasing number of client faults usually means you (or the software you use) are doing something wrong
(e.g. sending updates although your IP address did not change). If you see that, please fix it!

An increasing number of server faults means there is either something wrong with the nameserver or the
connection to it or it is rejecting the updates for your hostname.

At the bottom of the host view, we also show the last result messages for authentication (of course only if at can be
related to that host), for the client result, for the server result. Check if everything looks ok there.

Adding Domains

If you control an own nameserver / zone, you can use the service to dynamically update it with your router / update
client.

For this, it is required that the master nameserver of that zone accepts dynamic updates (RFC 2136) using a shared
secret. If you run your own bind9 nameserver for your domain, we show you how to configure it for dynamic updates
after you add a domain on nsupdate.info.

You can either privately use such an own domain or alternatively even offer them publically for all users of the service.

If you have cool domains, please offer publically!

Note: if you just register a domain at some domain seller (and the domain seller runs the DNS for you), you usually
just get some web interface to manage the DNS records. Often, that nameserver is not configured to accept dynamic
updates (RFC 2136) unless otherwise noted by your DNS hoster. If unsure, read their documentation, examine their
web interfaces (if they allow dynamic updates, there should be some means to configure or see the update algorithm,
secret and maybe even the update policy (where you can setup rules to allow/deny specific hosts) or just ask them.

If your DNS hoster does not support dynamic updates, there is some trick how you still can use them:

configure this for your domain at your DNS hoster:
dynamichost.yourdomain.com CNAME updatedhost.nsupdate.info

At the nsupdate.info site, add a host “updatedhost.nsupdate.info” and keep it updated using an update client.

Related Hosts

In short: update a whole bunch of DNS records for other hosts on same LAN.

This is a feature most interesting for IPv6 users, but the same mechanism also
works for IPv4 (it is just rather rare that you get a IPv4 network and you need
dynamic DNS). So, let’s assume IPv6 from now on.

On your main host entry you can configure the IPv6 prefix length (think of netmask).
Usually you’ll get a /64 network from your ISP, so keep the default of “64” there
and only change it if you know better.

The specific prefix you get from your ISP might be static or may change now and
then (for better privacy or other reasons - and in that case, you really need
the related hosts feature).

You need to configure a dyndns2 compatible updater on some device on your LAN
and the updater needs to send this device’s global IPv6 address to the service.

So far, nothing special, upon receiving an update the service will then update
DNS like this:

mainhost.nsupdate.info -> pppp:pppp:pppp:pppp:iiii:iiii:iiii:iiii

p are prefix parts, i are host/interface parts of the address.

Additionally, the service will go over all related hosts entries for mainhost
and does more DNS updates based on this computation:

relatedhost.mainhost.nsupdate.info -> pppp:pppp:pppp:pppp:rrrr:rrrr:rrrr:rrrr

You also see it prepends the related host’s name to your mainhost’s FQDN.

For the related hosts’s address, p is same prefix as above (the host is on same
network), but r comes from what you entered as interface ID into the related
host record.

In other words:

related_fqdn = relatedhost_name.mainhost_fqdn
related_address = mainhost_address_prefix + interface_id

Note:

	enter the static interface ID (usually you can get it from the rear 4 words
of the address that looks like FE80::rrrr:rrrr:rrrr:rrrr). The r part is
usually derived from your hardware MAC address and does not change.

	make sure your device has a IPv6 address with global scope, some prefix that
starts with a “2” and precisely that rrrr:rrrr:rrrr:rrrr value

	you only need a dyndns2 updater on one device (called mainhost in this
example), but the updater needs to find out an address with the same prefix
as seen on your LAN (should be easy if the updater runs on a LAN device, but
might be difficult if it runs on the router and the router has a different
external prefix)

	if you want your mainhost to resolve correctly to some specific device,
make sure you send this device’s IPv6 address with the update (myip=...) or
run the updater on that device and make sure the request originates from
the IPv6 address you want in DNS.

Other Services Updaters

Users can associate “other services” (3rd party services) updaters with their
hosts and if we receive an update for such a host, we’ll automatically send
(dyndns2) updates to these other services.

You can choose which kind of IP addresses shall be sent to the other service
using the “give IPv4” and/or “give IPv6” options.

Currently, Users can only use services that were made available by an admin
(by adding the service record using Django’s admin interface).

Browser-based Update Client

The service has a “built-in” browser/javascript-based update client that will
query the IP and send update requests if the IP changes.

One typical scenario where this is useful:

	you are an admin for multiple, sometimes rather ad-hoc clients where you
have to do remote support / maintenance

	the clients have no (working) dynamic dns host / updater configured

	you have prepared a hostname in the nsupdate.info service you use just
for such scenarios, e.g. “yourname-adhoc” (+ the base domain you use)

	you need to do some remote work, but you want to avoid losing access in
case you get disconnected and the IP changes

	you don’t want to require the client to find out his/her current IP and
communicate it to you nor do you want to remember an IP address if you can
have a nice (and always same) hostname

How to optimize this scenario:

	go to the “yourname-adhoc” entry and use “Show Configuration”

	copy and paste the URL shown in the “Browser” tab of the configuration help
panel, under headline “Browser-based update client”

	optional: try it yourself in your browser

	give this URL to your client (E-Mail, Chat, ...), tell the client to open it
with a browser and keep that page open in the browser until you’re finished.

	once the client has done that, “yourname-adhoc” will point to the client’s IP

Note:

	we show 3 slightly different URLs:
	the first one is generic and will use either IP v4 or v6,

	the other 2 are specific and will either enforce usage of IP v4, or v6.

	this whole browser-based mechanism is only for adhoc and temporary use - if
you need something permanently or repeatingly, please configure a real update
client

	if you can’t electronically give the URL to the client, you can also give:
	URL: like above, but remove the “yourname-adhoc.basedomain:secret@” part

	when clients visits that URL, it will ask for username and password:
	User name: yourname-adhoc.basedomain

	Password: secret

	let the client check “Last update response”. Should be “good” (or “nochg”)
plus same IP as shown below “My IP”. If it shows something else, then there
likely was a typo in the user name or password.

Troubleshooting

Look here first if it doesn’t work

On the web interface, find the not working host in the overview’s host list.

What does the “available” and “faults c/s” column say?

	if your host is not available, it can’t be updated (visit host view to make
it available)

	if you see increasing client faults count, your update client is doing something
wrong. in the end, that might flag that host as abusive: you’ll see “abuse” or
“abuse_blocked” in that case (visit host view to deselect “abuse” flag).

Now click on the hostname to go to the detailled host view.

There, at the bottom, you will see the last messages that were generated about
your client (whether it is updating ok or causing errors/warnings) and about
the domain’s DNS server (in case it can’t be reached or is malfunctioning or
rejects updates). The date/time given is UTC.

But please note: we can not show you issues with your credentials there (like
when you configured your update client with wrong values for http basic authentication).

Address update for your host is not working (and never worked)

Check your update client settings again:

	typos? additional spaces somewhere? this is sometimes hard to see.

	keep in mind that when we create and show you a new update secret, the old one becomes invalid.

	the updater uses your host’s fqdn and the update secret as credentials,
NOT your service web site username / password.

	if the https update URL does not work, try http - especially for older software.

Address update for your host is not working (but worked before)

If this is the case, first check these things (and then the ones listed above):

	if you use an updater that does not conform to the dyndns2 standard, it might be that your host got flagged as
abusive. Go to the detailled view of your host and see whether abuse is checked. If it is, fix / change your
updater then uncheck the abuse flag and save.

	if the client fault counter on the overview page keeps rising, you didn’t fix the issue - try again.

	if it keeps getting flagged as abusive, you didn’t fix the issue - try again.

	if you have a local network with multiple machines that shared one internet connection, it is sufficient to enable
an update client on one of the machines (preferably your internet router or a machine that is on most of the time).
if you run update clients on multiple machines, this may cause them sending nochg updates frequently and your host
might get flagged as abusive due to that.

Something else?

	read the hints and on-screen help the service shows to you, including the footer stuff.

	if nothing else helps, contact the service administrator.

	if you think you have found a bug in the software, file it on the project’s issue tracker on github (after doing
a quick check whether such a bug has already been reported or even fixed).

Update clients

It is important that you run a dyndns2 standards compliant software to update your host.

Recommended

Here are some clients that likely qualify:

	ddclient
	we offer configuration help for it, just copy & paste

	good working, reliable

	the official version is IPv4 only, IPv6 support needs a patched version

	Linux & other POSIX systems

	inadyn (>= 1.99.11)
	we offer configuration help for it, just copy & paste

	good working, reliable

	IPv4 only

	Linux & other POSIX systems

	python-dyndnsc
	still alpha/beta, but works

	IPv4 and good IPv6 support

	Mac OS X, Linux and FreeBSD

	whatever your router / gateway / firewall has for dyndns / ddns
	quality of update client implementations varies widely

	running on the system that has your public IP makes updating your host when your IP changes easier

	no need to run additional software on other machines in that network

	nsupdate-info’s browser-based updater
	only for adhoc scenarios, not intended for long term use

	runs in your browser with javascript

Known-Problematic

These clients or update methods have known issues or are not dyndns2 standards compliant.
This likely causes unnecessary load on the service servers and network.

You should not use these:

	a cron job + wget or curl
	will either send nochg updates frequently (your host will get flagged as abusive)

	or it will be very slow reacting to IP changes

	your self-written not fully standards compliant update client software
	it looks simple first, but to fully comply is more effort

	if you’re not willing to fully comply, then don’t even start

	there are already enough badly implemented and also “almost compliant” updaters out there

	rather try to use well-behaved existing update software

	or try to improve the “almost compliant” existing update software

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nsupdate.info 0.11.0 documentation

Administrating the service

Installation (for development/testing)

Create and activate a virtualenv for the installation (here with virtualenvwrapper):

mkvirtualenv nsupdate
workon nsupdate

Clone the repo and cd into:

git clone git@github.com:nsupdate-info/nsupdate.info.git nsupdate
cd nsupdate

Then install the software with requirements to your virtual env:

pip install -r requirements.d/dev.txt
pip install -e .

Configuration

nsupdate.info Service

First, please read the nsupdate/settings/*.py files - they contain a lot of
settings you can use to customize your nsupdate.info installation. dev is for
a development setup, prod is for a production setup and base has settings that
are common for both.

But do not change anything in there, but rather create your own
local_settings.py file, import from our settings and override anything you want
to change afterwards.:

from nsupdate.settings.dev import *
SECRET_KEY='S3CR3T'

IMPORTANT: you usually need to tell django what settings you want to use.

We won’t document this for every single command in this documentation, but
we’ll assume that you either set DJANGO_SETTINGS_MODULE environment variable
so it points to your settings module or that you give the –settings parameter
additionally with all commands that need it:

export DJANGO_SETTINGS_MODULE=local_settings # this is YOUR settings file
or
django-admin.py --settings=local_settings ...
python manage.py --settings=local_settings ...

Note: if Django can’t import your local_settings module, make sure that your
python search path contains the directory that contains local_settings.py:

we assume here that local_settings.py is in current directory.
alternatively, you could also give a specific path instead of .
export PYTHONPATH=.:$PYTHONPATH

Initialize the database

To create and initialize the database, use:

python manage.py migrate

Create the superuser account

To create the user who is administrator of the service, use:

python manage.py createsuperuser

Start the development server

python manage.py runserver

Nameserver

Now as the server is running, you can log in using the superuser account you
just created and use “admin” from the menu to access Django’s admin interface.

You’ll need to configure at least 1 nameserver / 1 zone to accept dynamic updates,
see the “Domains” section in the “user” part of the manual.

Installation (for production)

You usually will use a production webserver like apache or nginx (not Django’s
builtin “runserver”).

If you want to use a virtualenv: see the hints for development installation.

If you install from repo code, it is sufficient to use the production
requirements file (will install less packages than for development):

pip install -r requirements.d/prod.txt
pip install -e .

Alternatively, you can just install the latest release from pypi:

pip install nsupdate

Configuration

As described for testing/development, but use nsupdate.settings.prod in your
local_settings.py file.

Also, you will need to review the settings in the nsupdate.settings.prod
module and override everything that is different for your setup into your
local_settings.py file.

Note: if you do not setup ALLOWED_HOSTS correctly, your will just see status
400 errors.

WSGI

Module nsupdate.wsgi contains the wsgi “application” object.

Please consult the webserver / django docs how to configure it and how to run
django apps (wsgi apps) with the webserver you use.

Django has nice generic documentation about this, see there:

https://docs.djangoproject.com/en/1.7/howto/deployment/

Even if you do not follow or fully read the deployment guide, make sure that
you at least read the checklist:

https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/

HTTP Basic Auth

Additionally, you need to make sure that the “authorization” http header needed
for HTTP Basic Auth gets through to the nsupdate.info wsgi application. Some
web servers may need special settings for this:

WSGIPassAuthorization On # use this for apache2/mod-wsgi

Static Files

As soon as you switch off DEBUG, Django won’t serve static files any more,
thus you need to arrange /static/ file serving by your web server.

We assume here that you configured your web server to serve /static/ URL from
/srv/nsupdate.info/htdocs/static/ directory.

Django helps you to put all the static files into that directory, you just need
to configure STATIC_ROOT for that:

STATIC_ROOT = '/srv/nsupdate.info/htdocs/static'

And then, run this:

umask 0022 # make sure group and others keep r and x, but not w
python manage.py collectstatic

This will copy all the static files into STATIC_ROOT.

Now, you must set DEBUG=False so it doesn’t leak information from tracebacks
to the outside world.

Make sure your static files really work.

PostgreSQL

For production usage and better scalability, you may rather want to use
PostgreSQL than SQLite database. Django stores its sessions into the
database, so if you get a lot of accesses, sqlite will run into “database
is locked” issues.

Here are some notes I made when installing PostgreSQL using Ubuntu 12.04:

First installing and preparing PostgreSQL:

apt-get install postgresql # I used 9.1
apt-get install libpq-dev # needed to install psycopg2

within the virtual env:
pip install psycopg2

sudo -u postgres createdb nsupdate
sudo -u postgres createuser --no-createrole --no-superuser --no-createdb --pwprompt nsupdate
enter reallysecret password, twice
sudo -u postgres psql -c 'GRANT ALL PRIVILEGES ON DATABASE nsupdate TO nsupdate;'

sudo vim /etc/postgresql/9.1/main/pg_hba.conf
by default, postgresql on ubuntu uses only "peer" authentication for unix sockets, add "md5"
(password hash) authentication, otherwise it might use your login user instead of the configured user:
local all all md5

To make nsupdate.info (Django) use PostgreSQL, put this into YOUR settings:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'nsupdate', # database name
 'USER': 'nsupdate',
 'PASSWORD': 'reallysecret',
 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP.
 'PORT': '' # Set to empty string for default.
 }
}

Now proceed with manage migrate as shown above.

Customization of the Web UI

You likely will need to customize the Web UI a bit, here is how.

Overriding the builtin templates

If you want to add/modify footers or headers or if you need to add stuff
into the HEAD element of the html, you can override some includes we made
to support this usecase.

Create an custom template directory (not within the repository / code
directory) and add it to your settings, e.g.:

TEMPLATE_DIRS = ('/srv/nsupdate.info/templates',)

Below that template directory, you can override the builtin templates by
just using the same relative name, e.g.:

	includes/base_footer.html (footer of all web UI views)

	main/includes/home_bottom.html (bottom of main view)

	(there are more of these, just look into the code’s template dirs)

Best way to start is likely to copy the original file from the template
directories located below the code directory into YOUR custom template
directory and then slightly modify it.

As the templates might be cached in memory, you may need to restart your
wsgi process to have them reloaded.

Note: it is advised that you keep local customizations to a minimum as if you
override builtin templates with your customized copies, you will have to keep
your copies in sync with future changes we make to the builtin ones.

Custom templates

If you need to add some simple views, just showing some simple templates (like
e.g. if you have some footer links that link to these views to show some site-
specific content, some legalese, ...), do it like that:

	have a footer and a custom template directory like described in previous
section

	add files like main/custom/foo.html to that directory:

{% extends "base.html" %}
{% load bootstrap %}
{% block content %}
This is content rendered from template "foo.html".
{% endblock %}

	link to the view made from that template like this:

 link to custom foo.html view

Maintenance

Regular jobs

You need to run some commands regularly, we show how to do that on Linux (or
other POSIX OSes) using user cronjobs (use crontab -e to edit it). Make sure
it runs as the same user as the nsupdate.info wsgi application:

PYTHONPATH=/srv/nsupdate.info
DJANGO_SETTINGS_MODULE=local_settings
reinitialize the test user:
50 2 * * * $HOME/env/bin/python $HOME/env/bin/django-admin.py testuser
reset the fault counters:
55 2 * * 6 $HOME/env/bin/python $HOME/env/bin/django-admin.py faults --flag-abuse=150 --reset-client --notify-user
clear expired sessions from the database, use your correct settings module:
0 3 * * * $HOME/env/bin/python $HOME/env/bin/django-admin.py clearsessions
clear outdated registrations:
30 3 * * * $HOME/env/bin/python $HOME/env/bin/django-admin.py cleanupregistration
check whether the domain nameservers are reachable / answer queries:
0 4 * * * $HOME/env/bin/python $HOME/env/bin/django-admin.py domains --check --notify-user

Dealing with abuse

In the regular jobs example in the previous section,
–flag-abuse=150 means that it’ll set the abuse flag if the client fault counter
is over 150 (and, for these cases, it’ll also reset the fault counter back to 0).

–reset-client additionally sets all client fault counters back to 0, so all
counts are just “per week”.

–notify-user will send an email notification to the creator of the host if we
set the abuse flag for it. The email will contain instructions for the user
about how to fix the problem.

So, if you run this weekly, it means that more than 150 client faults per week are
considered abuse (e.g. if someone runs a stupid cronjob to update the IP instead
of a well-behaved update client).

Hosts with the abuse flag set won’t accept updates, but the user will be able to
see the abuse flag (as ABUSE on the web interface and also their update client
should show it somehow), fix the problem on the client side and reset the abuse
flag via the web interface. If the problem was not really fixed, then it will
set the abuse flag again the next week.

This procedure should make sure that users of the service run sane and correctly
working update clients while being able to fix issues on their own without
needing help from service administration.

For really bad cases of intentional or ongoing abuse, there is also a
abuse_blocked flag that can only be set or reset manually by service
administration (using django admin interface).
While abuse_blocked is set, the service won’t accept updates for this host.
The user can see the ABUSE-BLOCKED status on the web interface, but can not
change the flag.

Dealing with badly configured domains

In the regular jobs example in the previous section,
django-admin.py domains –check –notify-user means that we’ll check all
domains that are currently flagged as available.

We query the nameserver configured for the domain and check if it answers a
SOA query for this domain. If we can’t reach the nameserver or it does not
answer the query, we flag the domain as not available. We also flag it as
not public (this only is a change if it was public before).
If –notify-user is given, we notify the owner of the domain by email if we
flag the domain as not available. Owner in this context means: the user who
added the domain to our service.

Please note that we can not check whether the nameserver accepts dynamic
updates for the domain. The dns admin could have set arbitrary restrictions
on this and we do not know them. So if you have a domain configured with the
service, please make sure that dynamic updates really work.

Database contents

Users who are in the “staff” group (like the one initially created when creating the database) can access the
admin interface (see “Admin” in the same menu as “Logout”).

But be careful, the Django admin lets you do all sorts of stuff, admins are allowed to shoot themselves.
Only give Django admin access (“staff” group membership) to highly trusted admins of the service.

Software updates / upgrades

Please read the changelog before doing any upgrades, it might contain
important hints.

After upgrading the code, you’ll usually need to run:

python manage.py migrate

This fixes your database schema so it is compatible with the new code.

Maybe you also need the next command (we bundle .mo files, but if you run into
troubles with them, try this):

python manage.py compilemessages

Of course, you’ll also need to restart the django/wsgi processes, so the new
code gets loaded.

Tuning

If you get a lot of requests for /myip, the Python code handling this URL will
be rather busy. If you use nginx, you may optionally tune this and respond to
these requests directly from nginx without invoking any python code:

location /myip {
 add_header Content-Type text/plain;
 return 200 $remote_addr;
}

You need to add this to all server blocks (IP v4, v6, both) that are dealing
with requests for the service.

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nsupdate.info 0.11.0 documentation

The nsupdate.info software Project

History

The initial version of the nsupdate.info software was developed in 48h in the DjangoDash 2013 contest by:

	Arne Schauf [https://github.com/asmaps/]

	Fabian Faessler [https://github.com/Samuirai/]

	Thomas Waldmann [https://github.com/ThomasWaldmann/]

Project site

Source code repository, issue tracker (bugs, ideas about enhancements, todo,
feedback, ...), link to documentation is all there:

https://github.com/nsupdate-info/nsupdate.info

Translations

Translations are done on Transifex - please collaborate there to avoid double work / workflow issues:

https://www.transifex.com/projects/p/nsupdateinfo/

You need the transifex-client package so you have the tx command:

currently only works on python 2.x, transifex-client github repo has 3.3 support
pip install transifex-client

Please make sure to configure your notification settings so that you are
notified when the translation project is updated (so you can react quickly and
keep your translation fresh).

Translations update workflow (start from a clean workdir):

pull all translations from transifex:
tx pull
update the translations with changes from the source code:
django-admin.py makemessages -a
compile the translations to .mo files
django-admin.py compilemessages
push updated translation files back to transifex:
tx push -s -t

Contributing

Feedback is welcome.

If you find some issue, have some idea or some patch, please submit them via the issue tracker.

Or even better: if you use git, fork our repo, make your changes and submit a pull request.

For small fixes, you can even just edit the files on github (github will then fork, change and submit a pull request
automatically).

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nsupdate.info 0.11.0 documentation

Standards used

	Frontend Update-API: dyndns2 protocol
	dyndns2 api description on dyn.com [http://dyn.com/support/developers/api/]

	dyndns2 api description on noip.com [http://www.noip.com/integrate/]

	Backend: dynamic DNS update
	RFC2136 [http://www.ietf.org/rfc/rfc2136.txt]

Extensions we made to the standards

/nic/delete API url

The dyndns2 standard does not give a means to delete a DNS record (like A or
AAAA), you can only update to a new address using /nic/update.

Thus, we created a /nic/delete URL that behaves just like the dyndns2 update
api, but removes the A or AAAA record in DNS instead of updating it.

While the update API would actually use the given IP address to put it into
an A or AAAA record, the delete API uses it only to determine the address
type, whether it is IPv6 or v6 and then deletes the A or AAAA record.

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	nsupdate.info 0.11.0 documentation

Security considerations

Transmission security

Use https for the web interface as well as for the update client (if possible).

Otherwise, your username / password (FQDN / update secret) will be transmitted
in clear text (unencrypted).

The web interface will warn you if you use it via http. If WE_HAVE_TLS is
set to True, it will suggest you better use the https site and link there.

Additionally, the service administrator can implement a redirect from the
http to the https site within the webserver configuration for the WWW_HOST.
The redirect should not be implemented for WWW_IPV4_HOST and WWW_IPV6_HOST
as it is unknown whether all update clients can deal with a redirect (and
support TLS).

For the router / update client configuration examples we show when creating a
update secret, we use update URLs with https: (and we also tell why it might
not work).

On the hosts overview page, we show whether we received the last update via TLS.

Please note that if you like security, you also need to use https (with
certificate verification) if you use the web-based method to query your IP
address. If you use http, a powerful attacker could MITM your request and
tell you a wrong IP, which your updater then would happily write into DNS.

Login with remote vs. local Account

If you use a already existing remote account to log in into our service, you
don’t need to create a local profile (with username, E-Mail and password).

That way, we need to store less information about you - especially no password
hash (and you also don’t need to create a new password just for our service).
So, this is a little more safe if you just consider our service.

BUT: If you use some external service to log in, you of course need to trust
them for this purpose as they are telling “yes, this is really you”.

Also, if you cancel the account on that external service and you don’t have
a local profile (login, E-Mail, password) with us, you will be unable to log
in afterwards or recover access to your hosts/domains.

So maybe the best way is to first create a local profile (username, E-Mail,
password), then log in and associate your other remote accounts with that
local profile.

Passwords / Secrets / Keys

Interactive login password

We recommend that you use a rather strong and not guessable password for this.
Do not re-use passwords, use a password system or a password manager.

The interactive login password for the web site is stored using Django’s
default hasher mechanism, which is currently pbkdf2 (a very strong and
intentionally slow password hash). Brute-Force attacks against such hashes are
very slow, much slower than against simple hashes like (s)sha1/sha256 etc.

It is NOT stored in clear text by nsupdate.info.

If you lose the password, you’ll have to do a password reset via e-mail.

Automated update secret

The automated update secret for routers or other update clients is a
random and automatically generated secret. We store it using the sha1 hasher
of Django (which in fact is salted-sha1, a not very strong, but fast-to-compute
hash).

Considering that a lot of routers or update clients store this secret in clear
text in their configuration and often transmit it using unencrypted http (and
not https), this secret is not too safe anyway. We also wanted to save some cpu
cycles here and rather not use pbkdf2 for this regularly and automatically used
secret.

It is not stored in clear text by nsupdate.info.

If you lose the secret, you’ll have to generate a new one and change it in your
update client also.

We use a random and automatically generated update secret to avoid that users
enter a bad password here (like reusing a password they use somewhere else,
choosing a too simple password) and to avoid disclosure of such user-chosen
passwords in case the hashes ever get stolen and brute forced.

Nameserver Update Secret (backend, RFC 2136)

We currently store this secret (which is basically a base64 encoded shared secret,
one per dynamic zone) “as is” into the database (“Domain” records there).

This is somehow critical, but also hard to do better - encryption would only
help very little here as we would need to decrypt the update secret before using it,
so we would need the unlocked decryption key on the same machine.

Make sure no unauthorized person gets that secret or he/she will be able to update
ANY record in the respective zone / nameserver directly (without going over
nsupdate.info software / service).

We support creating a random update secret, so you don’t need an extra tool for this.

Other Services Update Secret (dyndns2 client)

We need to store this secret “as is” into the database for the same reasons as
outlined above.

But: we tell you in the services overview whether we’ll use TLS to transmit the
update, so at least if TLS is enabled, it won’t go unencrypted over the wire.

CSRF protection

We use Django’s CSRF protection middleware.

Clickjacking protection

We use Django’s clickjacking protection middleware.

XSS protection

Django’s templating engine html-escapes inputs by default.

Cookies

The software (“as is”) uses these cookies:

	“csrftoken” (host-only, for CSRF protection)

	“sessionid” (host-only, to keep the session when you have logged-in to the
web interface)

If you have set WE_HAVE_TLS to True (because you run the software on a https
site), you should also set *_COOKIE_SECURE to True to avoid the cookies getting
transmitted via http.

We use a session cookie by default (gets cleared when you close the browser).
If you check the “Keep me logged in” checkbox on the login screen, then we’ll
set a permanent cookie with a lifetime as configured by the site admin
(SESSION_COOKIE_AGE, default: 14 days).

Be careful with domain cookies

The software (“as is”) does not use any domain cookies.

In case you modify the software, please be extremely cautious with domain
cookies and in case of doubt, do rather not use them.

If you use domain cookies (like for ”.yourservice.net”, the leading dot
makes it a domain cookie), all hosts in that domain would be able to read
and write these cookies. Your site (at e.g. www.yourservice.net), but also
users’ sites (like attacker.yourservice.net).

Obviously, this might lead to security issues with stealing, modifying and
faking domain cookies.

Django’s SECRET_KEY

Django’s SECRET_KEY needs to be a long, random and secret string (it is
usually set up by the administrator of the site).

The builtin default settings will try to read SECRET_KEY from an environment
variable of same name. If there is no such environment variable, the SECRET_KEY
will be undefined.

You can also define the SECRET_KEY in your local_settings.py.

If you do not define a SECRET_KEY by one of these methods, the application
will refuse to start and give you an error, that a SECRET_KEY is required.

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	nsupdate.info 0.11.0 documentation

Index

 Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		nsupdate.info 0.11.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2015, The nsupdate.info Team.
 Last updated on 2015-02-15.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

